Public endpoints for discovery and metadata
These public endpoints allow you to programmatically discover available models, get schemas, and download integration code - all without authentication.
/api/modelsRetrieve a complete list of all available AI models with their categories, subcategories, and endpoints.
curl -X GET https://api.genvrresearch.com/api/models{
"success": true,
"count": 25,
"data": [
{
"name": "Flux Dev",
"category": "imagegen",
"subcategory": "flux_dev",
"description": "High-quality image generation",
"endpoint": {
"generate": "/api/v1/generate",
"status": "/api/v1/status",
"response": "/api/v1/response"
},
"documentation": "https://api.genvrresearch.com/imagegen/flux_dev",
"preview": "https://app.genvrresearch.com/imagegen/flux_dev"
},
// ... more models
],
"message": "Models retrieved successfully"
}name- Model display namecategory- Model category (e.g., "imagegen")subcategory- Model identifier (e.g., "flux_dev")documentation- Link to full API documentationpreview- Link to live demo/api/schema/:category/:subcategoryRetrieve the input schema and parameter definitions for a specific model.
curl -X GET https://api.genvrresearch.com/api/schema/imagegen/flux_dev{
"success": true,
"data": {
"category": "imagegen",
"subcategory": "flux_dev",
"parameters": {
"required": [
{
"name": "prompt",
"type": "string",
"description": "Text description of the image to generate"
}
],
"optional": [
{
"name": "aspect_ratio",
"type": "enum",
"default": "1:1",
"allowedValues": ["1:1", "16:9", "21:9", "4:5", "9:16"],
"description": "Image aspect ratio"
},
{
"name": "num_outputs",
"type": "integer",
"default": 1,
"minimum": 1,
"maximum": 4,
"description": "Number of images to generate"
}
]
}
},
"message": "Schema retrieved successfully"
}/api/openai-function/:category/:subcategoryDownload a ready-to-use OpenAI function schema with complete implementation for a specific model.
curl -X GET https://api.genvrresearch.com/api/openai-function/imagegen/flux_dev \
-o flux_dev_openai_function.pyA Python file containing:
/api/comfyui-node/:category/:subcategoryDownload a custom ComfyUI node with complete GenVR API integration for a specific model.
curl -X GET https://api.genvrresearch.com/api/comfyui-node/imagegen/flux_dev \
-o genvr_imagegen_flux_dev_comfyui.pyA Python file containing:
Fetch the list of available models to build dynamic UI dropdowns or model selectors in your application.
Use the schema endpoint to automatically generate input forms with validation based on each model's parameters.
Allow users to explore and discover new models programmatically without visiting the documentation.
Validate user inputs against the schema before sending requests to ensure all required parameters are provided.
// Get all available models
const modelsResponse = await fetch('https://api.genvrresearch.com/api/models');
const modelsData = await modelsResponse.json();
console.log(`Found ${modelsData.count} models`);
// Get schema for a specific model
const category = modelsData.data[0].category;
const subcategory = modelsData.data[0].subcategory;
const schemaResponse = await fetch(
`https://api.genvrresearch.com/api/schema/${category}/${subcategory}`
);
const schemaData = await schemaResponse.json();
console.log('Required parameters:', schemaData.data.parameters.required);
console.log('Optional parameters:', schemaData.data.parameters.optional);
// Build request dynamically based on schema
const requestBody = {
uid: 'YOUR_USER_ID',
category: category,
subcategory: subcategory,
};
// Add required parameters
schemaData.data.parameters.required.forEach(param => {
requestBody[param.name] = getValueForParameter(param);
});
// Make the generation request
const generateResponse = await fetch('https://api.genvrresearch.com/api/v1/generate', {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': 'Bearer YOUR_API_KEY'
},
body: JSON.stringify(requestBody)
});